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Abstract

This study introduces a gradient-based optimization framework for aircraft wing design
tailored to varying atmospheric conditions. The optimization process incorporates key aerodynamic
and structural considerations, including lift, drag, air density, and bending stress constraints, within a
Multidisciplinary Design Optimization (MDO) framework. The design variables—wingspan and
chord length—are optimized to minimize operational power while maintaining structural
integrity. A BFGS gradient-based optimizer with a backtracking line search algorithm was
selected after evaluating multiple optimization techniques, demonstrating superior efficiency and
accuracy. Numerical results reveal that constrained designs favor reduced wingspan and increased
chord length, preserving aerodynamic and structural performance compared to unconstrained
solutions. Additionally, the study highlights the inverse relationship between wing area and pressure
levels as a critical factor for optimal wing design. Given the dependency of air density and
dynamic pressure on altitude, the framework offers flexibility to adapt designs for diverse
environmental conditions. This approach provides an efficient and validated solution for energy-
efficient, structurally robust wing designs, with broad applicability in aerospace engineering.

Keywords

Aircraft Wing Design, Multidisciplinary Design Optimization (MDO), Optimization Algorithms,
Optimization Framework, Low-fidelity Model, (Rarefied) Atmospheric Condition, Aerodynamics,
BFGS Gradient-basedMethod, Structural Performance, Aerospace Engineering

Nomenclature

A······································= Reference area of the wing
Awetted································= Wetted area
bsec··································· = Cross-section width
CD···································· = Drag coefficient
CL·····································= Lift coefficient
Cf····································· = Skin friction coefficient
c······································ = Chord
D····································· = Drag
Df·····································= Viscous drag
Di····································· = Induced Drag
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e······································ = Oswald efficiency factor
f (x)·································· = Rosenbrock function
�······································= Propulsive efficiency
����··································= Maximumpropulsive efficiency
�······································= Air density
ℎ���···································= Cross-section height
I······································ = Moment of inertia
k······································= Form factor
n······································= Number of design variables
��···································· = Population of design points
L······································= Lift
M·····································= Moment
P······································= Power
Re···································· = Reynoldsnumber
s······································ = Wingspan
sj······································= Step of j
����································· = Maximumbending stress
������·································= Yield stress
tw·····································= Web thickness
tb····································· = Flange thickness
T······································= Thrust
μ······································= Air dynamic viscosity
U······································= Free-streamvelocity
��····································· = Flight speed at peak propulsive efficiency
W·····································= Cruiseweight
�0··································· = Structure and payloadweight
�����································ = Wing area dependent weight
xj····································· = Design variable of j

1. Background andMotivation

The design of aircraft wing geometry is determined by multiple factors, including aerodynamic
properties, range and mission design, structural performance, engine placement, load distribution,
mass properties, and subsystem installation. It is critical for aircraft engineers to discover an
optimal wing design that balances the "profit and loss" of different factors. The concept of
Multidisciplinary Design Optimization (MDO) is the application of numerical algorithms to
solve an engineering design problem that involves more than one design discipline [1]. The MDO
algorithm optimizes a formulated function with constraints and design variables and discovers an
optimal design point based on a reasonable initial guess. There are a variety of research areas in
aerospace engineering that may benefit from MDO. For instance, MDO is applied to optimize
airbreathing hypersonic vehicles, and the result shows a dramatic 46% range increase
compared to the initial design [2]. This paper focuses solely on the implementation of MDO in
aircraft wing geometry designs, including both aerodynamic and aero-structural considerations.

According to previous studies [3, 4], variations in atmospheric conditions, particularly
changes in air density, have a significant impact on the aerodynamic performance of aircraft.
Optimized wing geometry, including wing area, wingspan, and chord dimensions, must be
carefully adjusted to accommodate these changes. For instance, the atmospheric conditions at 30-
km altitude exhibit drastically lower air density than those at sea level due to the rarefied
environment. Table 1 provides a comparison of specific atmospheric parameters at sea level, 30-
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km altitude on Earth, and conditions on Mars, respectively. The extreme reduction in air density
at high altitudes presents substantial engineering challenges in designing a functional and
flyable aircraft capable of performing under such conditions. One of the most critical
challenges is the generation of sufficient lift, as low air density severely diminishes the
aerodynamic performance. To counteract this, the design of the wing area must scale
proportionally with the decrease in atmospheric density, ensuring sufficient lift generation to
sustain flight. A fundamental approach to addressing this issue involves increasing the aircraft
wing area, as a larger wing area allows for greater lift generation under rarefied conditions.
However, continuously increasing the wing area introduces significant aero-structural challenges.
Specifically, a longer wingspan combined with a thinner chord can result in substantial bending
and shear stresses at the wing root due to large normal and axial forces. These stresses can
compromise structural integrity and pose safety concerns. To address this, a bending stress
constraint must be incorporated into the optimization process to ensure the structural feasibility
and safety of the wing design. In this study, the objective function focuses on minimizing the
required power for an aircraft, which is inherently correlated to the aerodynamic performance
and the optimized wing geometry (wingspan and chord). A bending stress equation is
introduced as a constraint to account for aero-structural considerations. Balancing aerodynamic
efficiency and structural integrity, the optimization program delivers a safer, more practical
wing design suitable for real-world applications under varying atmospheric conditions.

Theworks of Caros et al. [5] and Shapiro andManela [6] offer innovative approaches for leveraging
MDO solvers to address complex aircraft wing design challenges under rarefied atmospheric
conditions. Inspired by these advancements, this study establishes the overarching objective of
minimizing the aircraft’s power requirement during flight as the primary objective function.
The parameters within the power equation are intricately linked to the aerodynamic
performance of the aircraft, both directly and indirectly, thereby playing a critical role in
influencing the optimal wing geometry. By capturing the interdependencies between power
consumption and aerodynamic efficiency, the optimization framework provides a robust and
systematic approach for achieving efficient and practical wing designs in rarefied environments.

This study chose to minimize the required power for the aircraft in cruising flight by varying its
wingspan and chord. There are three reasons for the optimization function selection. Firstly,
reducing the power required in cruising flights decreases the propellant requirement for the
flight, which allows the airliner to reduce the cost of jet fuel. Secondly, minimizing the required
power increases the aircraft’s mission range using the same amount of fuel. The airliner could
operate the aircraft over a longer distance without concern about additional expenses. Thirdly,
the airliners will be more profitable if the aircraft reduces its designed cruising power. In
addition to the financial advantage of fuel-saving and better range, the airliners also save
maintenance costs for engines, because their operating intensity is reduced since the required
power is dropped.

When optimizing the design variables, wing structure, another discipline besides aerodynamics, is
interrelated with the variables of wingspan and chord. The structural performance, such as bending
and torsion resistance, determines the flight safety of an aircraft, which is the top priority of
aviation. The reason to account for structural performance of the wing is to avoid safety issues,
such as material fatigue, permanent damage, or even structural failure. Most aircraft wing design
consists of a front and rare spar to resist loads and torsions. The dimensions of spars are designed
based on the wing geometry. For example, the spar length is equal to the span, and the spar width
is proportional to the length of the chord. Additionally, the placement of spars is also decided by
the chord length, thus affecting the torsion resistance of the wing. Without the assistance of MDO,
it will be an iterative process for aerodynamicists and structure engineers to size the wing
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geometry to obtain the optimal aerodynamic performance while maintaining structural safety.
However, with the powerful numerical tools of MDO, the program software is able to account
for the wing’s structural strength as constraints when optimizing toward a specific objective.

Property Earth (Ground) Mars (Ground) Earth (30 km)
Gravity (m/s2) 9.81 3.72 9.78
Density (kg/m3) 1.225 0.0167 0.0177
Pressure (Pa) 101325 660 1150
Specific Heat Ratio 1.4 1.34 1.4

Table 1: Comparison of average characteristics of Earth and Mars’ atmosphere [4].

2. Investigation on the CoupledModels

The investigation of coupled models is critical for analyzing and selecting the most
appropriate and efficient optimization approach for a specific Multidisciplinary Design
Optimization (MDO) problem. This study examines two classes of optimization methods for
aircraft wing design: (1) gradient-free methods and (2) gradient-based methods. Each approach
presents distinct advantages and limitations. Gradient-free optimization methods rely solely on
objective function evaluations, without requiring derivatives or Hessians. This makes them
straightforward to implement and advantageous for problems where gradient information is
intractable or expensive to compute. However, their slow convergence rates, lower solution
precision, and limitations in handling high-dimensional problems must be carefully evaluated in
the context of the application. In contrast, gradient-based optimization methods utilize gradient
information to efficiently navigate the search space, offering high precision, computational
efficiency, and scalability for large-scale problems. Despite these strengths, their reliance on
gradient availability and sensitivity to initial guesses introduces complexity, particularly for
highly non-linear or non-convex optimization tasks. Ultimately, the choice of method depends
on the specific problem characteristics and the trade-off between computational cost and
optimization accuracy, emphasizing the importance of selecting an approach that aligns with the
problem’s requirements.

2.1. Analysis of Gradient-Free Methods

Two gradient-free algorithms are designed: the Nelder-Mead algorithm and the Real-Encoded
Genetic algorithm. The simplex method of Nelder and Mead (NMs) is a deterministic, direct-
search method that is among the most cited gradient-free methods. Genetic algorithms (GAs) are
population-based evolutionary algorithms.

Table2 elucidates the global optimum of the 2D Rosenbrock function obtained using five different
methods. All five algorithms, encompassing both gradient-free and gradient-based approaches,
converge nearly to the global optimum, which coincides with the exact solution, [1, 1]. The
optimal function values achieved are all close to zero, the exact global optimum function value.
Among thesemethods, the real-encoded genetic algorithm demonstrates the least relative error.
In general, gradient-based methods incur lower computational expense than gradient-free
methods, requiring fewer iterations to achieve convergence. Moreover, the gradient-based
algorithms, such as BFGS, and the real-encoded genetic algorithm, a type of gradient-free
method, consistently converge to the exact global optimum even in high-dimensional problems
with up to 256 dimensions. In contrast, numerical results indicate that the two Nelder-Mead
algorithms fail to converge to the global optimumwhen the problemdimension exceeds 16.
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Figure1 illustrates the convergence rates of the 2D Rosenbrock function for various algorithms,
starting from the initial point [0, 0]. The results demonstrate that the gradient-based BFGS
algorithms achieve convergence with the fewest iterations, highlighting their computational
efficiency. Additionally, the real-encoded genetic algorithm exhibits superior accuracy, achieving
solutions with minimal relative errors. In contrast, the Nelder-Mead (NM) algorithms are
characterized by their simplicity and ease of implementation. The performance of the custom-
implemented NM algorithm aligns closely with that of the off-the-shelf NM algorithm from
SciPy, demonstrating consistent efficiency and accuracy across implementations.

Table 3 and Figure2 present the relationship between the number of function evaluations for the
Rosenbrock function and its dimensionality across various algorithms. The results indicate that the
number of function evaluations increases proportionally with the dimensionality of the
Rosenbrock function for all algorithms. Notably, all algorithms exhibit a positive correlation
between iterations and dimensionality, with the exception of the Real-Encoded Genetic Algorithm,
which demonstrates a relatively flat trend, highlighting its robustness to dimensional increases.

Table 2: 2D Rosenbrock Function Optimization with Five Different Methods

Method x* f (x*) Iterations
Nelder-Mead [0.99999985, 0.99999974] 1.72527553714× 10−13 83
Real-EncodedGenetic [1.00000000, 1.00000000] 3.91002694915× 10−21 100
Off-the-Shelf NM [1.00000439, 1.00001064] 3.68617691518× 10−10 79
BFGS (FD) [0.99999911, 0.99999821] 8.06633167879× 10−13 20
BFGS (AG) [0.99999913, 0.99999825] 7.71728835661× 10−13 20

Table 3: Number of Function Calls with Dimension by Various Methods

Method 2D 4D 8D 16D 32D

Nelder-Mead Algorithm 83 290 1412 13158 237753
Real-Encoded Genetic Algorithm 100 100 100 100 100
Off-the-Shelf NM 79 245 1137 2525 5512
BFGS (Finite-Difference) 20 34 55 89 165
BFGS (Analytic Gradients) 20 34 55 92 164

The Nelder-Mead (NM) algorithm is based on a simplex. It is a geometric figure defined by a set of
n + 1 points in the design space of n variables. The NM algorithm with fewer variables (n) will be
non-functional when the problem is multidimensional. Increasing the design space of n variables
solves the inaccuracy and non-convergence while applying the NM algorithm to higher-
dimensional problems.

The first step of the simplex algorithm is to generate n + 1 points based on an initial guess for
the design variables. For the displayed cases, the starting point (x0) is set as [−1.2, 1.4], the
edge length ( �) of the simplex is set to 1, and the number of design variables (n) is set to 3.
New points (x(1), x(2), x(3)) for an equal-length-edge simplex are generated by adding steps (sj)
to each component of the initial point. Secondly, the simplex size tolerances and the function
value standard deviation tolerances are defined to quantify the convergence of the simplex
method. Thirdly, the order of simplex points is sorted from the lowest (best) to the highest f
(x(j)). New points are then required to be created. The Nelder-Mead (NM) algorithm performs
five primary operations on the simplex to create a new one: reflection, expansion, outside
contraction, inside contraction, and shrinking. Each iteration aims to replace the worst point
with a better one to form a new simplex (the centroid, xc). Each iteration always starts with
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reflection, which generates a new point (reflection, xr). If the reflected point is better than the
best point, the search direction is considered good, and the simplex expansion is performed
with α = 2. If the reflected point is between the second-worst and the worst point, the

direction is deemed poor, and an outside contraction is performed (� = 1
2

) . If the reflected

point is worse than the worst point, the NM algorithm applies an inside contraction instead

(� =− 1
2

) . The last-resort operation is shrinking, performed when no point along the line

connecting x(n) and xc yields a better solution.

Fig. 1: Convergence rate of 2D Rosenbrock function with a starting point at [0, 0].

Fig. 2: Plot of function callswith dimension for different optimizationmethods.
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The Real-Encoded Genetic Algorithm (GA) operates on a population of design points rather
than a single starting point. In each GA iteration, referred to as a generation, a population of
design points (np) is maintained, where each design is represented by a chromosome, and
each design variable is represented as a gene. The iterative steps of the coded GA are inspired
by biological reproduction and evolution, consisting of three main operations: (1) selection,
(2) crossover, and (3) mutation. Genetic algorithms also employ different encoding methods
for representing design variables, including binary-encoded and real-encoded approaches.
This study uses the real-encoded genetic algorithm to define the design variables for further
analysis.

For the real-encoded genetic algorithm, lower and upper bounds must be specified as part of
the initial setup to constrain the range of the population generation. First, an initial random
population is generated, followed by the evaluation of the objective function. A tournament
selection process is applied during the selection step, where np points are paired randomly,
and the best point from each pair is selected to join the mating pool. A linear crossover
method is used during the crossover step, generating two or more offspring points along the
line defined by the two parent points. Specifically, child 1 is computed as the average of the
two parent points, while child 2 is determined by extrapolating in the direction of the “fitter”
parent. Finally, mutation occurs with a small probability of p = 0.005, introducing random
changes to some points in the population. Bound checking is necessary during mutation to
ensure all mutated points remain within the predefined lower and upper limits.

2.2. Analysis of Gradient-Based Methods

An optimization solver integrating the BFGS direction search method with the Bracketing line
search algorithm and the strong Wolfe conditions has been developed for evaluation. The
objective is to identify an efficient optimizer suitable for the aircraft wing design application,
based on a comprehensive comparison and selection process. The final choice of the direction
search method and line search algorithm was made by evaluating the convergence rates of
function iterations across two direction search methods and two line search methods,
resulting in four distinct optimization systems. Table 3presents the successful application of
the BFGS optimizer in solving the 2D Rosenbrock test problem, demonstrating its efficacy. As
a result, the BFGS optimizer was validated and selected as the final optimization method for
the application.

Newton’s method is highly efficient due to its use of second-order information, which
provides superior search directions. However, it has the significant drawback of requiring the
Hessian matrix, which is challenging to compute analytically for complex objective functions
in gradient-based optimization. Consequently, Newton’s method is often impractical for such
problems, making the Quasi-Newton method a viable alternative. The Quasi-Newton method
addresses this limitation by approximating the Hessian matrix using first-order information
(gradients), offering high computational efficiency compared to steepest descent and
conjugate gradient methods. Quasi-Newton methods are typically robust and require fewer
function evaluations, resulting in significant computational time savings. Unlike Newton’s
method, which may lack robustness and can terminate prematurely at local minima in some
instances, Quasi-Newton methods iteratively build an approximation of the Hessian by
utilizing the gradient at each step. These methods estimate curvature in the step direction and
refine the Hessian approximation, enabling them to leverage a quadratic approximation of the
objective function in combination with a line search algorithm.
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Table4: 2DRosenbrock function optimization resultswith coupled different search directions
and line searchmethods. Theconvergence tolerance is 1e-5.

Method Search Direction �(�∗) �∗ Iterations Function Calls
Gradient Descent Backtracking 6.1319 ×10-11 [0.99999218, 0.99998432] 10,916 21,084

Bracketing/Pinpointing 1.0980 ×10-10 [0.99998953, 0.99997902] 2,733 12,901
BFGS Backtracking 1.2326 ×10-32 [1.00000000, 1.00000000] 37 56

Bracketing/Pinpointing 0.0 [1.00000000, 1.00000000] 42 565
BFGS Off-the-Shelf
Optimization

- 2.5353 ×10-15 [0.99999997, 0.99999995] 32 64

Fig. 3:Convergence ratewith iteration fordifferentoptimization algorithms for solving the2D
Rosenbrock function.

According to Table 3, the most efficient and robust optimization solver is the BFGS method
coupled with the Backtracking line search algorithm. This combination provides the most
accu-rate estimation of the global minimum with the fewest function iterations compared to
exact numerical solutions. Under identical convergence tolerances, the BFGS solver with
Backtracking demonstrates greater computational efficiency than the off-the-shelf BFGS
optimizer. The performance of various optimizers was evaluated using the 2D Rosenbrock
function. As shown in Table 4, the Gradient Descent (GD) method, combined with either the
Backtracking or Bracketing-Pinpointing line search algorithms, is significantly less efficient
than the Quasi-Newton method. Specifically, solving the 2D Rosenbrock function requires
10,916 and 2,733 iterations for Gradient Descent when using the Backtracking and Bracketing
-Pinpointing algorithms, respectively. In contrast, when paired with the same respective line
search algorithms, the BFGS solver requires only 37 and 42 iterations. Thus, the BFGS solver
coupled with the Backtracking line search algorithm emerges as the most efficient and
accurate gradient-based optimization method. Moreover, it can outperform standard off-the-
shelf optimization tools, such as Scipy minimize, for specific problem domains.



Frontiers of Engineering and Scientific Research FESR
ISSN: 2790-5209 Vol 3, No.1, 2025

16

2.3. Final Decision of Utilized Optimizer in Applications

This study evaluated gradient-free and gradient-based optimization methods to determine
their accuracy and efficiency. Gradient-free methods included Nelder-Mead (NM) and Real-
Encoded Genetic Algorithm (GA), while gradient-based methods combined direction search
techniques like BFGS and Gradient Descent with line search algorithms (e.g., Backtracking,
Bracketing, and Pinpointing). Based on the results in Tables 3 and 4, the BFGS method with
Backtracking line search was selected as the final optimizer for the aircraft wing design
problem. This configuration demonstrated superior efficiency, robustness, and accuracy,
outperforming alternative methods despite slightly higher iteration counts in specific
quadratic cases. The advantages of its precision and computational efficiency far outweighed
any minor drawbacks. Figures 1and 3 illustrate the BFGS optimizer’s superior convergence
rates on the Rosenbrock function, underscoring its effectiveness for this application. The
selection was based on a thorough evaluation of convergence rates, iteration counts, and
computational efficiency across the 2D Rosenbrock test case. Key observations from the
investigation are as follows:

•Performanceon2DRosenbrock Function:
– BFGS coupled with Backtracking converged to the global minimum at a function
value of approximately 1.2326 × 10-32 within37 iterations and 56 function evaluations.

– In contrast, Gradient Descent with Backtracking required 10,916 iterations and 21,084
function evaluations to converge, highlighting the inefficiency of gradient-only methods
compared toQuasi-Newton approaches.

– BFGS with Bracketing-Pinpointing also performed well but required more
iterations (42) and function evaluations (565) than Backtracking.

•Advantages of BFGSwithBacktracking:
– Efficiency: The solver consistently required fewer iterations and function evaluations
than gradient-onlymethods and even other Quasi-Newton configurations.

– Robustness: BFGS with Backtracking maintained stable performance across different
test functions, avoiding the pitfalls of local minima that can plague Newton-based
methods.

– Accuracy: The combination provided highly precise results, achieving global
minimumvalues identical to exact solutions in numerical tests.

• Limitations of AlternativeApproaches:
– Newton’s method, while theoretically efficient, was unsuitable due to the
computational infeasibility of obtaining analytic Hessians for the application’s
complex objective functions.

– Gradient-free and gradient-only methods like NM and GD were computationally
expensive and inefficient, particularly for higher-dimensional problems, requiring
significantly more iterations to converge.

Based on the findings, the BFGS method coupled with the Backtracking line search algorithm
was selected as the final optimizer. This solver offers a superior balance of computational
efficiency, robustness, and accuracy, making it ideal for solving the complex, high-dimensional
optimization problems associated with the aircraft wing design application. As illustrated in
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Figures 1 and 3, the convergence rates for BFGS with Backtracking outperform alternative
methods, further reinforcing its suitability for the task. The final implementation leverages
the strengths of the BFGS method and Backtracking line search, ensuring reliable and efficient
optimization for the problem domain.

3. Methodology

The objective of the problem is to discover the optimal wingspan and chord under different
atmospheric conditions. The wing geometry is determined by the span and chord, which is
critical to compute aerodynamic forces, mass properties, and propulsive efficiency. The
reference area and wetted area of the aircraft wing are defined in Equation 1.

� = ��, �wet = 2.05 � (1)

According to Equation 2, the change in wing geometry impacts the aerodynamic forces acting
on the aircraft, specifically lift and drag forces. These forces are used to calculate the aircraft
dynamics, such as cruising speed and climb rate.

� = 1
2

��2���, � = 1
2

��2��� (2)

The aircraft is assumed to maintain a constant speed at its cruising altitude. Therefore, the
magnitude of the lift force equals the aircraft ’ s cruising weight, which could be estimated
using Equation 3.

� = � = �0 + ������ (3)

The total drag force acting on the aircraft has two major components: parasite (zero-lift) drag
and drag due to lift [7]. These two components could be approximated using multiple
methods. Still, this report implemented the skin-friction method to calculate the parasite drag
and the Oswald span efficiency method to estimate the drag due to lift. Equation 4 calculates
the skin friction coefficient using the Reynolds number. The parasite drag component Df is
estimated by Equation 5. The Oswald span efficiency method calculates the induced drag Di in
Equation 5 using the lift force and the Oswald efficiency factor e. Finally, the total drag on the
aircraft is computed by adding the drag components.

�� = 0.074
��0.2 , where �� = ���

�
(4)

�� = 1
2

��2�������, �� = �2

1 2��2��2�
, � = �� + �� (5)

One key component for computing engine power is the propulsive efficiency, which is usually
estimated by a Gaussian model based on the maximum efficiency parameters. Equation 6
calculates the propulsive efficiency. Eventually, the aircraft propulsive power could be
calculated by Equation 7, which is also the objective function of the problem formulation.

� = ���� exp  − �−�� 2

2����
2 (6)

� �, � = � = ��
�

(7)

Structural safety is another critical consideration when designing the aircraft wing geometry.
When cruising at high altitude, the wing is often subjected to a bending moment and torsion
due to the nonuniform distribution of lift on the surface of the wing. The front spar of the wing
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structure is designed to withstand most of the bending moment, which needs to be
constrained by a safety factor. Figure 4 shows an I-beam (also referred to as H section) which
is usually selected as the front spar of the aircraft wing. The geometry of the beam cross-
section is designed based on the wingspan and chord. In this study, it is assumed that the
height and width of the I-beam are proportional to the chord, shown in Equation 8. Indicated
in Equation 9, the web and flange thicknesses are kept constant to simplify the calculation.

ℎ��� = 0.1�, ���� = 0.4� (8)

�� = �� = 0.004 � (9)

A key variable to compute the bending moment is the moment of inertia, which is determined
by the cross-section design of the I-beam. Equation 10 shows the method for approximating
the moment of inertia of the wing spar.

� = ℎ���
3

12
�� + ����

6
��

3 + ℎ���
2 ����

2
�� (10)

We assume a uniform span-wise lift distribution, meaning the lift force could be considered a
point force acting on the 12.5% span point from the root chord. Thus, the bending moment is
calculated using Equation 11.

� = ��
8

(11)

Equation 12 can be used to obtain the maximum bending stress on the spar with the bending
moment. This term indicates the highest stress acting on the structure, which needs to be
constrained within a designed range to avoid structural fatigue, permanent damage, or even
failure.

���� = �ℎ���
2�

(12)

The stress constraint is formulated as follows. The ultimate load and safety factors are
assumed to be 2.5 and 1.5. The ultimate stress on the wing spar shall always be kept under the
material yield stress with the consideration of a 1.5 safety factor, which is illustrated in
Equation 13. The mathematical form of the constraint is shown in Equation 14.

�������� ���� ������ × ������� ������ ≤
�������� ����� ������ ���ℎ 1.5 ������ ������ (13)

2.5 ���� − ������

1.5
≤ 0 (14)

Fig. 4: Geometry of the front spar of thewing structure.
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4. Optimization Problem Formulation

The optimization problem is the power optimization of a rectangular lifting-surface platform
for which directly considers the viscous and induced drags and indirectly considers the lift.
The optimization problem is formulated as follows:

�������� � �, � = ��
�

�� ������� �, �

������� �� 2.5 ���� − ������

1.5
≤ 0

������ = 200 ���

�, � > 0

� = � ∙ � > 0

The required power of the aircraft is optimized by varying both the wingspan and chord of the
rectangular wings (with a taper ratio of 1). The bending stress constraint ensures that the
wing's structural integrity matches the safety requirement of the design, limiting its maximum
value below the yield stress. The projected span and chord (whose product is wing area)
constraints ensure the configuration is physically feasible and stays within a bounding
platform.

The initial guess of the shape has a 40-meter wingspan and a 2-meter chord as a starting point
of the optimization. In the meantime, because there are both aerodynamic and structural
considerations in this problem, the resulting wing has a constrained and practical wing aspect
ratio for real-world applications. Therefore, this emphasizes the importance of carefully
selecting the objective and including all relevant constraints. The parameters for this problem
are given in Table 5 as follows:

Table 5: Parameter Values andDescriptions

Parameter Value Unit Description

P 1.2 kg/m3 Density of air
μ 1.8 × 10−5 kg/(m sec) Viscosity of air
k 1.2 – Form factor
CL 0.4 – Lift coefficient
e 0.80 – Oswald efficiency factor
W0 1,000 N Fixed aircraft weight
Warea 8.0 N/m2 Wing areadependentweight
ηmax 0.8 – Peak propulsive efficiency
U 20.0 m/s Flight speed at peak propulsive efficiency
σstd 5.0 m/s Standard deviation of efficiency function

5. Design Optimization Results

This study presents two sets of numerical results for aircraft wing design optimization: (1)
unconstrained optimization and (2) bending stress-constrained optimization. These results
were obtained using a validated gradient-based optimizer, employing the BFGS direction
search method coupled with a Bracketing line search algorithm. The optimization path and
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the convergence of relative error are illustrated in Figures 5and 6, validating the robustness
of the obtained solutions. The analysis focuses on the optimization results for wingspan,
chord, and the required minimum power under varying pressure levels. Additionally, the
optimized wing dimensions across different atmospheric conditions are examined,
highlighting the relationship between wing area design and environmental factors, as
presented in Tables 6 and 7. The findings underscore the optimizer ’ s capability to adapt
aircraft wing designs to varying air densities and altitudes, minimizing power requirements
based on operational conditions. These results have potential applications, including the
design of propeller blades for Martian rotorcraft, where atmospheric conditions differ
significantly from Earth’s.

5.1. Numerical Solution of Unconstrained Wing Design Optimization

Table 6 presents the results of unconstrained optimization under varying atmospheric
conditions, detailing the optimized wing dimensions (span and chord) and the corresponding
minimized power. Figure 5 illustrates the optimization path and convergence rate for the
wing design process at different pressure levels (740, 300, and 50 torr). These numerical
results highlight the performance of the optimizer and provide valuable insights into the
optimal wing design configuration under unconstrained conditions.

According to Table 6, it indicates that the wing area design is inversely proportional to
pressure levels, as lower atmospheric densities (e.g., at a 30-km altitude) necessitate a
significant increase in wing area to generate sufficient lift per unit area. Specifically, both
wingspan and chord exhibit exponential growth as air density decreases. Consequently, the
minimum required power also increases to account for the additional aerodynamic drag and
energy consumption associated with the larger wing area. Under such low-density
atmospheric conditions, continuous increases in wing area demand not only a focus on
aerodynamic performance but also consideration of aero-structural constraints to ensure a
practical and feasible design. To address this, a bending stress-constrained wing design
optimization will be analyzed and discussed in the subsequent section.

Theoretically, drag on the wing is directly related to power, which serves as the primary
objective in the design optimization, while lift, influenced by air-stream velocity, is indirectly
related through the power equation. Consequently, the aerodynamic performance of the
aircraft plays a critical role in determining the required power. As indicated by the numerical
results in Table 6, a larger wing area—achieved by increasing both wingspan and chord—is
essential to sustain flight in rarefied atmospheric conditions. The reduced air density at high
altitudes necessitates a proportional increase in wing area to maintain the desired lift.
Moreover, the wing area must scale exponentially in such environments due to a substantial
decline in the lift coefficient, which directly affects the aerodynamic performance. This
increase in wing area compensates for the diminished lift per unit area under rarefied
conditions. However, while an enlarged wing area addresses the issue of insufficient lift
generation, it introduces significant challenges in terms of structural feasibility. The excessive
wingspan and chord dimensions in the unconstrained case could compromise the wing ’ s
structural integrity, particularly under bending and shearing stresses during flight. These
factors make such designs impractical for real-world applications. Structural constraints,
including bending and shearing stress considerations, must be incorporated into the
optimization process to address these limitations. This ensures the resulting design not only
meets aerodynamic performance requirements but also maintains structural reliability, better
reflecting practical application scenarios. Details on the bending stress constraint and its
numerical results are provided in Section 5.2.
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Table 6: Unconstrained Optimization Results Under Different Atmospheric Conditions

Pressure (Torr) Air Density (kg/m3) Power (W) Span (m) Chord (m) Iteration

740 1.200 923.2824 25.4804 0.5034 15
500 0.769 1014.0571 31.8945 0.6528 19
300 0.461 1179.9399 41.9636 0.8910 23
100 0.154 2503.6149 84.5363 1.8846 41
50 0.077 11216.2987 145.1423 3.2235 52
25 0.038 916587.6889 255.0901 5.3775 12
Table 7: Constrained Optimization Results for Alternative Atmospheric Conditions

Pressure (Torr) Air Density (kg/m3) Power (W) Span (m) Chord (m) Iteration

740 1.200 968.3909 16.6938 0.7772 53
500 0.769 1045.2288 22.5726 0.9298 54
300 0.461 1200.4345 32.0999 1.1702 55
100 0.154 2524.2902 69.7105 2.2791 55
50 0.077 11391.7601 111.3397 4.1370 50
25 0.038 953194.4367 165.7730 7.9020 51

5.2. Numerical Solution of Constrained Wing Design Optimization

Table 7 presents the results of constrained optimization under varying atmospheric conditions,
detailing the optimized wing dimensions (span and chord) and the corresponding minimized
power with a bending stress constraint function involved. By providing a design bound, this
constraint function constrains the wing area within a region where the aero-structural
feasibility is. Figure 6illustrates the optimization path and convergence rate for the wing design
process at different pressure levels (740, 300, and 50 torr) with a maximum bending stress
constraint included (as shown in Equation 14). These numerical results highlight the
optimizer's performance and provide valuable insights into the optimal wing design
configuration under aero-structural constrained conditions. Comparing the aero-structural
constrained optimal designs to the non-constrained ones under varying atmospheric conditions,
a more comprehensive necessity of constraints in the design optimization can be represented.
Those constraint functionsmake the optimal design of the objectivemore reasonable, approaching
the situation of applications in real life.

As shown in Table 7, which aligns closely with Table 6, the wing area design remains inversely
proportional to pressure levels. At lower atmospheric densities, such as those encountered at a
30-km altitude, the wing area must increase significantly to generate sufficient lift due to the
reduced air density. Yet, unlike the unconstrained results, the constrained optimization
demonstrates a notable reduction in wingspan and a widening of the chord length. This shift
results from the addition of the bending stress constraint, which prevents the wing dimensions
from exceeding structural limits. While the unconstrained design prioritizes aerodynamic
efficiency with extended wingspans, the constrained design accounts for aero-structural
challenges, ensuring that thewing remains feasible under real-world conditions.
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(a) Optimization at 740-torr pressure (b) Norm at 740-torr pressure

(c)Optimization at 300-torr pressure (d) Norm at 300-torr pressure

(e) Optimization at 50-torr pressure (f) Norm at 50-torr pressure

Fig. 5: Unconstrained aircraft wing design optimization under various atmospheric conditions.
Optimization paths and convergence rates are plotted at 740-, 300- and 50-torr pressure levels,
respectively.
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The inclusion of the bending stress constraint leads to several notable trends. As shown in Table8,
the wingspan is reduced by an average of 40%, with decreases ranging from -21.3% at 100 Torr to
as much as -53.9% at 25 Torr. These reductions reflect the structural limitations imposed under
extreme atmospheric conditions, where an excessively long wingspan would compromise the
wing’s integrity. In response to the reduced wingspan, the chord length increases to compensate
and maintain the required lift. The chord grows by an average of 27%, peaking at 35.2% for 740
Torr and remaining significant at lower pressures, such as 23.9% at 300 Torr and 22.1% at 50
Torr. This adjustment towards a shorter, wider wing enhances structural stability while still
achieving the aerodynamic lift necessary for flight. As depicted in Figure 7, the power
requirement also shows a modest increase due to the altered wing geometry. On average, the
power consumption increases by 2.5%, with the maximum difference observed at 4.66% for 740
Torr and a minimum of 1.54% at 50 Torr. The increase in power arises from aerodynamic
inefficiencies introduced by the larger chord and reduced wingspan, which together increase the
induced drag. While this increase is relatively small, it highlights the trade-offs inherent in
balancing aerodynamic performance and structural constraints. The visual trends presented in
Figure 7 further illustrate the impact of the bending stress constraint across different pressure
levels. At higher pressures (e.g., 740 Torr), the unconstrained design achieves better
aerodynamic efficiency with longer wingspans and narrower chords. However, constrained
optimization becomes increasingly critical as the pressure decreases (e.g., 50 Torr and 25 Torr).
The results at these lower pressures show a more pronounced reduction in wingspan and an
increase in chord length, driven by the need to counteract the extreme decrease in air density
while maintaining structural feasibility. Without the bending stress constraint, the unconstrained
designwould become impractical under such rarefied conditions.

Overall, the constrained optimization strikes a balance between aerodynamic performance and
structural integrity. The results demonstrate that while the bending stress constraint slightly
increases power consumption, it ensures a feasible wing design with a more realistic geometry.
By reducing wingspan and increasing chord length, the constrained design addresses both the
aerodynamic and structural challenges posed by varying atmospheric conditions, making it a more
practical solution for real-world applications, particularly under low-density environments.

5.3. Optimal Aircraft Wing Design Solutions

Figure 8 provides an overview of the optimized aircraft wing designs across varying
atmospheric conditions, specifically at pressure levels of 740 torr, 300 torr, and 50 torr. The
results highlight a clear relationship between air density and the total wing area required to
maintain sufficient lift. Under standard atmospheric conditions (740 torr), the optimal wing
area is approximately 13 m2. In this case, the higher air density facilitates sufficient lift
generation per unit wing area, minimizing the total wing size required. However, as the
atmospheric density decreases, the wing area must increase proportionally to compensate for the
reduced lift generation caused by insufficient air density and a corresponding reduction in the CL
under rarefied conditions. For example, at 300 torr, the optimal wing area increases to
approximately 38 m2, representing an increase of nearly 192% compared to the standard
atmospheric condition. In extremely rarefied conditions, such as at 50 torr, the optimization
results yield a significantly larger wing area of approximately 461m2. This increase corresponds
to a remarkable growth of nearly 35 times (or 3446%) relative to the standard atmospheric
environment. Such a dramatic expansion in wing area is essential to generate adequate lift to
sustain the aircraft in flight under low-density atmospheric conditions.
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(a) Optimization at 740-torr pressure (b) Norm at 740-torr pressure

Optimization at 300-torr pressure (d) Norm at 300-torr pressure

(e) Optimization at 50-torr pressure (f) Norm at 50-torr pressure

Fig. 6: Bending stress constrained aircraft wing design optimization under various
atmospheric conditions. Optimization paths and convergence rates are plotted at 740-, 300-
and 50-torr pressure levels, respectively.
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Table 8: Difference in Power, Span, and Chord Across Atmospheric Conditions

Pressure (Torr) Air Density (kg/m3) Power (%) Span (%) Chord (%)

740 1.2 4.658091854 -52.633 35.233
500 0.769 2.982283599 -41.297 29.793
300 0.461 1.707260603 -30.728 23.856
100 0.154 0.819056786 -21.268 17.307
50 0.077 1.540248506 -30.360 22.082
25 0.038 3.840428175 -53.879 31.948

Fig. 7: Percentage of difference in power, wingspan, and chord with pressure levels for the
results with and without constraints.

The constrained and unconstrained optimization results exhibit significant differences,
underscoring the importance of incorporating aero-structural constraints. By comparing the
numerical results with and without the bending stress constraint, it is evident that the
constrained optimal design consistently features a shorter wingspan and a wider chord. These
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adjustments ensure the design remainswithin a feasible region that balances aerodynamic efficiency
and structural integrity. However, additional constraints should be integrated into the optimizer
to enhance the practicality of the wing design further. For example, although the current
constrained solution at the 50-torr pressure level achieves structural feasibility, its
manufacturability requires further analysis due to the extreme wing dimensions. Additionally,
the feasibility of the design during the take-off stage must be considered, particularly in higher air
density environments. The large wing area optimized for rarefied conditions could produce
excessive lift in dense atmospheric conditions, leading to structural or operational challenges.
As a result, such designs may primarily be suited for specialized applications, such as planetary
exploration, where the aircraft is deployed in rarefied environments and carried to altitude via a
rocket or similar launch vehicle. Expanding the optimization framework to address these
considerations will improve the robustness and applicability of the resultingwing designs.

Fig. 8: Overview of the aircraft wing design optimization under varying atmospheric
conditions.

6. Future Improvement and Application

Several key enhancements can be considered for future applications to further refine and enhance
the optimization framework for aircraft wing design. These improvements include:

1) Addition of a Shear Stress Constraint: In this study, only a bending stress constraint was
incorporated. To address aero-structural integritymore comprehensively, an additional shear
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stress constraint should be introduced, particularly at the root of the wing. The wing root
often experiences the most significant bending stress and shear stress moments during flight
due to combined radial, axial, and normal forces. Neglecting shear stress constraints may
compromise the structural safety of the design, as the interplay between these forces can
result in critical stress levels. Including a shear stress constraint function will better capture
the combined effects of bending and shear loads, ensuring greater reliability and robustness
in the structural design.

2) Inclusion of Airfoil Thickness: This study focused on the optimization of a 2D aircraft
wing using the gradient-based BFGS method. Expanding the framework to include the airfoil
thickness and transitioning to a 3D wing model will make the optimization more thorough
and practical for real-world applications. The inclusion of thickness enables a better
representation of the aerodynamic and structural behaviors of the wing, particularly in
complex operational environments.

3) Implementation of the MACH-Aero Framework for Airfoil Optimization: Coupling the
current optimization framework with the MACH-Aero platform will provide a more robust
aerodynamic shape optimization process for airfoil cross-sections. Similar to the objective of
the wing optimization in this study, MACH-Aero focuses on minimizing the drag coefficient
(CD) while maintaining a constant lift coefficient (CL) across varying pressure levels. By
integrating MACH-Aero, the optimization can analyze the airfoil’s performance in a broader
aerodynamic context.

The implementation of the MACH-Aero framework introduces a gradient-based aerodynamic
shape optimization process capable of comparing optimized airfoil designs to existing
supercritical airfoils. The minimum-drag airfoils can be obtained using ADFlow, a computational
fluid dynamics (CFD) solver integrated into MACH-Aero. The optimization problem is formulated
as follows:

• Objective Function:Minimize CD.

• Equality Constraints:Maintain CL, pressure levels, and freestreamMach number.

• Inequality Constraints: Restrict the angle of attack (AOA), cross-sectional area, chord
length, and airfoil thickness.

The goal will be to reduce the drag coefficient at a freestream Mach number below 0.9 while
maintaining the desired lift coefficient within a 5-degree corrected AOA (wind tunnel conditions).

The Reynolds number, ranging between 104 and 2.5 × 105, will be parameterized concerning the

cross-sectional area and angle of attack constraints. The governing equations applied for this
optimization will be the 2D Reynolds-Averaged Navier-Stokes (RANS) equations, assuming a
constant ratio of specific heats (1.4) and a Prandtl number of 0.71. The wing geometry will be
parameterized using the Free-Form Deformation (FFD) method, which allows for smooth,
flexible control of the airfoil shape.

By addressing these improvements—adding shear stress constraints, incorporating airfoil
thickness, expanding to 3D models, and integrating MACH-Aero—the optimization framework
can deliver a more robust, accurate, and practical solution. This will ensure enhanced
aerodynamic performance, minimized drag, and greater structural integrity for advanced aircraft
designs operating under varying atmospheric conditions.
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7. Conclusions

This study presented an optimization framework for aircraft wing design under varying
atmospheric conditions, incorporating both aerodynamic and structural considerations within a
Multidisciplinary Design Optimization (MDO) approach. The optimization problem was
addressed using a gradient-based BFGS method coupled with a Backtracking line search algorithm,
which demonstrated superior efficiency, accuracy, and robustness compared toalternativemethods.

The numerical results yielded several key findings:

1) Effect of Atmospheric Conditions on Wing Design: The wing area design was found to
be inversely proportional to atmospheric pressure levels. At standard atmospheric conditions,
a relatively small wing area was sufficient due to higher air density facilitating lift generation.
However, as the air density decreased, the wing area had to increase significantly to maintain
sufficient lift, reflecting the extreme lift requirements under rarefied conditions.

2) Impact of Structural Constraints on Optimal Design: The comparison between
constrained and unconstrained optimizations highlighted the importance of incorporating
aero-structural constraints. Under constrained conditions, the wing designs consistently
exhibited shorter wingspans and wider chords compared to the unconstrained results. This
trade-off addressed structural feasibility, ensuring that the wing dimensions remained within
practical design limits, whilemaintaining aerodynamic performance.

3) Power Consumption Trends: The constrained optimization results showed a modest
increase in power requirements, averaging around 2.5%, due to aerodynamic inefficiencies
introduced by the altered wing geometry. These findings emphasize the trade-offs between
aerodynamic performance and structural integrity when designing wings for extreme
environments.

4) Feasibility of the Optimized Designs: While the constrained solutions addressed
structural limitations effectively, further considerations are necessary for real-world
feasibility, particularly during take-off in high-density environments. The large wing areas
optimized for rarefied atmospheric conditions may produce excessive lift under standard
conditions, posing operational challenges. As such, these designs are best suited for
specialized applications, such as planetary exploration, where deployment occurs in low-
density atmospheres, and the aircraft is carried to altitude via auxiliary systems like rockets.

In conclusion, this study demonstrated that the BFGS optimization framework, coupled with
structural constraints, can effectively adapt wing designs to varying atmospheric conditions
while balancing aerodynamic and structural performance. The inclusion of the bending stress
constraint ensured practical and feasible designs, particularly under extremely low-density
environments. Future improvements, such as incorporating shear stress constraints, airfoil
thickness, and 3D optimization, will further enhance the robustness and applicability of the
framework. Additionally, integrating the MACH-Aero framework for airfoil optimization will
enable the design of minimum-drag airfoils, providing a more comprehensive aerodynamic
optimization tool. These advancements will expand the capability of the framework to address
complex, real-world aerospace challenges.
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Appendix

The 2D Rosenbrock function (shown in Equation 15) was used to test the BFGS optimizer for this
study.

� �1, �2 = (1 − �1)2 + 100(�2 − �1
2)2 (15)

The high-dimensional Rosenbrock function used for testing is defined in Equation 16. This
function investigates the relationship between function iterations and problemdimensions.

� � = �=1
�−1 100(��+1 − ��

2)2 + (1 − ��)2� (16)

The derived gradient functions for the multidimensional Rosenbrock function are given in
Equation17.

∇� � =

−2 + 2�1 − 400�2�1 + 400�1
3

200�2 − 200�1
2 − 2 + 2�2 − 400�3�2 + 400�2

3

⋮
200��−1 − 200��−2

2 − 2 + 2��−1 − 400����−1 + 400��−1
3

200�� − 200��−1
2

(17)
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